فصلنامه علمی

نوع مقاله : مقاله علمی

نویسندگان

1 دانشجوی دکتری ‌بازاریابی، گروه مدیریت، دانشگاه آزاد اسلامی، واحد تهران شمال، تهران، ایران.

2 . استادیار گروه مدیریت، موسسه آموزش عالی غزالی، قزوین، ایران. (نویسنده مسئول).

3 استادیار ‌گروه مدیریت، دانشگاه آزاد اسلامی، واحد تهران شمال، تهران، ایران

4 دانشیار ‌گروه مدیریت، دانشگاه آزاد اسلامی واحد تهران شمال، تهران، ایران.

10.22056/jir.2021.227927.2723

چکیده

هدف: توسعه فناوری بیمه ‌و پذیرش آن از سوی مشتریان، علاوه‌بر کاهش هزینه، باعث افزایش ضریب نفوذ بیمه و کاهش تخلفات و تقلبات بیمه‌ای ‌می‌گردد. اما، علی‌رغم رشد کاربران اینترنت و ‌کارافزارها، فناوری‌های ‌بیمه‌ای سهم ناچیزی در تولید حق بیمه در کشور دارند. از سویی، ‌این فناوری‌ها زمانی مؤثر خواهند بود که مورد پذیرش قرار گیرند. به همین دلیل، ‌‌تحقیق حاضر به شناسایی و طراحی الگوی آمادگی پذیرش فناوری بیمه پرداخته است.
روش‌شناسی: ‌به‌منظور طراحی الگوی پذیرش فناوری بیمه ‌از دو روش داده‌بنیاد و مدل‌سازی ساختاری-تفسیری استفاده شده است. به این صورت که ابتدا، ‌عوامل مؤثر بر پذیرش فناوری بیمه به روش داده‌بنیاد و ‌ابزار مصاحبه عمیق با خبرگان بیمه‌ای (مجموعاً ۴۳ مصاحبه تا رسیدن به اشباع نظری) شناسایی شد. سپس، از روش مدل‌سازی ساختاری–تفسیری برای طراحی الگوی پذیرش فناوری بیمه و شناسایی سازه‌ها و روابط بین آنها بهره گرفته شد.
یافته‌ها: ‌بخش مدل‌سازی ساختاری–تفسیری به طراحی مدل اولیه پذیرش فناوری بیمه منجر شده و نتایج ‌خروجی الگو ‌بر اساس نمودار قدرت نفوذ-وابستگی ‌نشان داد متغیرهای حمایت، مشروعیت‌بخشی، توسعه فرهنگی و عملکرد، قدرت نفوذ بالایی داشته و تأثیرپذیری کمی دارند و در ناحیه متغیرهای مستقل قرار می‌گیرند و متغیرهای قیمت، همکاری، اعتماد و مزایای خرید نیز از وابستگی بالا، اما نفوذ اندکی برخوردارند و ‌وابسته محسوب می‌شوند. همچنین، متغیرهای محدودیت و پیچیدگی قدرت نفوذ و میزان وابستگی مشابهی دارند و متغیرهای پیوندی هستند.
نتیجه‌گیری: حمایت صنعت بیمه در مشروعیت‌بخشی و تقویت زیرساخت‌های لازم برای فعالیت کسب‌وکارهای نوپای بیمه‌ای موجب کاهش محدودیت‌های موجود ‌و ‌افزایش اعتماد و همکاری شرکت‌های بیمه‌ای با فناوری بیمه شده و می‌تواند افزایش استقبال مشتریان از فناوری بیمه و استفاده از مزایای خرید ناشی از این شیوه را به دنبال داشته باشد.
 
طبقه‌بندی موضوعی: G22 ,O33

کلیدواژه‌ها

عنوان مقاله [English]

Designing insuretech acceptance model via interpretive- structural modeling

نویسندگان [English]

  • A. Parsamanesh 1
  • H. Mehrani 2
  • S. vahabzadeh Monshi 3
  • N. Hasanmoradi 4

1 Ph.D Student in Marketing, Department of Management, Islamic Azad University, Tehran North Branch, Tehran, Iran.

2 Assistant Professor of Department of Management, Ghazali Institute Higher Education, Qazvin, Iran. (Corresponding Author).

3 Assistant Professor of Department of Management, Islamic Azad University, Tehran North Branch, Tehran, Iran.

4 Associate Professor of Department of Management, Islamic Azad University, Tehran North Branch, Tehran, Iran.

چکیده [English]

Objective: The development of insurance technology in the Iranian insurance industry and its acceptance by customers increase insurance penetration and reduce violations and frauds, as well as costs. Despite the growth in the number of internet and app users, Insurance startups have a small share in the premiums produced. The necessity to conduct this research is quite clear owing to the importance of technology acceptance in the insurance industry and the role of startups in countries’ GDP. An investigation of readiness to accept InsurTech is a critical challenge that should be considered when implementing any type of technology. Therefore, the success of insurance startups is not limited to the industry’s authority, but it also includes identifying effective factors in users’ acceptance. In addition, if this technology is not utilized with all its features and technical capabilities, it will not achieve efficiency. These features are effective when they are accepted. This research mainly aims to design a model for insurance technology acceptance using interpretive structural modeling (ISM).
Methodology: This research uses grounded theory and interpretive structural modeling to design a technology acceptance model in the insurance industry. The grounded theory and 43 in-depth interviews with experts were used to identify factors affecting insurance technology acceptance. The interviews were conducted from December 2019 to May 2020 until theoretical saturation was achieved. Then, the thematic analysis was used to determine, analyze, and explain models within the data, and a confirmatory technique was applied to validate qualitative data. In the next stage, interpretive structural modeling was utilized to design the model and identify the constructs and relationships. The validity of the qualitative findings was assessed by interviewees during the interviews, and transcriptions of interview contents were reviewed carefully and immediately after each interview. The accuracy of concepts and themes extracted in terms of coordination with the reality was verified by comparing and reviewing interview texts. In addition, the impact of the themes obtained by the grounded theory was assessed using the structural-interpretive questionnaire distributed among ten interviewees.
Findings: The initial technology acceptance model was designed by interpretive structural modeling. According to the influence-dependence power diagram, support, legitimization, cultural development, and performance have a high influence power and low dependence power, and they are placed at the quadrant of independent variables. Moreover, price, cooperation, trust, and purchase advantages have a high dependency power and low influence power, and they are considered dependent variables. Constraints and complexity also have similar influence power and dependence power, and thus, they are linkage variables. Finally, among the variables, support with the highest influence power and lowest dependence power has the greatest effect on capacitation, while the trust with the lowest influence power and highest dependence power is the first level or dependent variable. It should be noted that none of the variables was laid in the autonomous quadrant. Since the variables of support, legitimization, cultural development, and performance have high driving power and influence power, these variables should be considered by the industry’s authority to create a supportive atmosphere toward InsurTechs. They should provide appropriate resources, and boost infrastructures for sustainable development of InsurTechs. On the other hand, the variables of price, cooperation, trust, and purchase advantages have a high dependency power, and InsurTech companies should help to develop and increase national insurance penetration by presenting up-to-date marketing techniques, interacting with insurers concerning the attraction of customer trust in the insurance services and resolving their anxiety about their purchase, and creating attractiveness in customer purchase by providing unique advantages and more appropriate prices and conditions relative to traditional companies. According to the results, the variables of constraints and complexity have a high driving power. In other words, they give and receive high effects, and any change in these variables leads to fundamental changes.
Conclusion: Resolving legal barriers by industry’s authority, providing suitable insurance services by startups, and facilitating the process are necessary activities. Acceptance of new technologies and cooperation among insurance companies and startups are the first step that should be considered by InsurTechs firmly toward the acceptance of technology by employees and customers. Furthermore, attracting the trust and interest of top managers of insurance companies is an important task of insurance startups so that they provide a context to customers’ further participation by ensuring the protection of their information. Cooperation among insurance companies and insurance startups in providing appropriate price and conditions, facilitating the access of InsurTechs, as business partners, to the real premium, and creating a platform to present unified web services by the industry’s authority and insurer companies jointly are required for the acceptance of this technology. Support of the insurance industry in legitimizing and fostering the infrastructure for insurance startups decreases constraints. On the other hand, trust and cooperation of insurance companies with InsurTechs increase the customers’ acceptance of the insurance technology and use of purchase advantages achieved by this strategy. The results indicate that support has the greatest impact on capacitation, while trust is the most affected variable.
 
Jel-Classification: G22,O33

کلیدواژه‌ها [English]

  • Insurtech
  • Technology Acceptance
  • Startup
  • Ssupport
آذر، عادل.، خسروانی، فرزانه و جلالی، رضا. (1395). تحقیق در عملیات نرم، رویکردهای ساختاردهی مسئله. تهران: انتشارات سازمان مدیریت صنعتی، چاپ دوم.
اصغرپور، محمدجواد. (1398). تصمیم‌گیری‌های چند معیاره. تهران: انتشارات دانشگاه تهران، چاپ هفدهم.
‌‌ایران‌مهر، مسلم و گیتی‌پسند، زهرا. (1395). یک پژوهش کیفی: بررسی عوامل موثر بر خوش‌بینی دانش‌آموزان به نظام آموزشی. فرهنگ مشاوره و روان درمانی، 7(27): 126-105.
بختیار نصرآبادی، حسینعلی.، حسنقلی پور، طهمورث.، ودادهیر، ابوعلی.، بادین، مسعود و میرا، سیدابوالقاسم. (1399). دیالکتیک تردید و اعتماد در رفتار خرید بیمه‌زندگی «تحقیقی مبتنی بر نظریه داده‌بنیاد. ‌پژوهشنامه بیمه، 35(4): 88-43. ‌
بهادری، محمدکریم.، مهرابیان، فردین.، تیموزاده، احسان.، روانگرد، رامین.، یعقوبی، مریم و حسینی، سید مصطفی. (1396). تعیین عوامل تأثیرگذار بر استفاده بهینه از فناوری اطلاعات در صنعت بیمه سلامت: مطالعه موردی در استان گیلان در سال ۱۳۹۵. مجله طب نظامی، ‌۱۹‌(۶)‌: 623-616.
‌پناهی اسفرجانی، مهدی. (1397). نقش فناوری‌های بیمه‌ای در صنعت بیمه ایران. بیست و پنجمین همایش ملی بیمه و توسعه، تهران، 13 آذرماه. ‌
رضایی، محمد.، رهنما رودپشتی، فریدون.، سعیدنیا، حمیدرضا و علی‌پور درویش، زهرا. (1399). مدل پارادایمی ارزش‌آفرینی برند در صنعت بیمه با تأکید بر بیمه عمر "رویکرد داده بنیاد‌". پژوهشنامه بیمه، ‌۳۵‌(۳): 36-9.
روحانی راد، شایان. (1399). فین تک؛ جستاری در سطح جهان و ایران. سیاست‌نامه علم و فناوری، 10(1): 94-75.‌
رهنورد، فرج‌اله.، داودنیا، داود.، عباسپور، فریبا و فرزین‌مهر، بهاره. (1395). بررسی تأثیر آمادگی تکنولوژی بر عملکرد سازمانی از طریق پذیرش فناوری. فرایند مدیریت و توسعه، ۲۹‌(۱): 118-99.
سیدجوادین، سیدرضا.، مقیمی، سید محمد و سیدامیری، نادر. (1394). بازاریابی کارآفرینانه کسب‌و‌کارهای کوچک و متوسط صنعت فناوری اطلاعات با رویکرد نظریه زمینه‌ای کلاسیک. مدیریت بازرگانی، 7(1): ‌125-101.
شفق، احد و عبدالهی دزفولی‌نژاد، لیلا. (1396). بررسی فرصت‌ها و تهدیدهای فین تک (FIN TECH) برای سیستم بانکی ایران. ‌مطالعات اقتصاد، مدیریت مالی و حسابداری، 3(2): 210-202.
کاردگر، ابراهیم و بهشتی، عطیه. (1396). اینشورتک و نقش آن در مدیریت ریسک در صنعت بیمه. بیست و چهارمین همایش ملی بیمه و توسعه، تهران، 13 آذرماه.
کبوتری، جمال‌الدین. (1398). شناسایی و اهمیت‌سنجی عوامل مؤثر بر به‌کارگیری بیمه‌نامه‌های الکترونیک در صنعت بیمه (مطالعۀ چند شرکت بیمه‌ای). پژوهشنامه بیمه، 34(2): 71-52.
کرسول، جان دبلیو و کلارک، پلانوکلارک. (1392). روش‌های پژوهش ترکیبی. ترجمه علیرضا کیامنش و جاوید سرایی، تهران: ‌نشر ‌آییژ، چاپ اول.
گلابیان مقدم، مرضیه. (1397). مروری بر مدل‌های پذیرش فناوری اطلاعات با تأکید بر نظریه انتظار-تایید. نشریه الکترونیکی سازمان کتابخانه‌ها، موزه‌ها و مرکز اسناد آستان قدس رضوی، 10(38): 16-1.‌
Bahadori, M. K., Mehrabian, F., Teymourzadeh, E., Ravangard, R., Yaghoubi, M. & Hosseini Zijoud, S. M. (2018). Determining the effective factors on the optimal use of information technology in the health insurance industry: A case study in Guilan province. Journal of Military Medicine, 19(6): 616-623. (In Persian)
Bakhtiar Nasrabadi, H., Hasangholipoor, T., Vedadhir, A. A., Badin, M. &  Mira, S. A. (2020). Explanation of skepticism and trust dialectic in buying behavior of life insurance consumers: A Grounded Theory. Iranian Journal of Insurance Research , 35(4): 43-88. (In Persian)
Braun, V. & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2): 77-101.
Corbin, J. & Strauss, A. (2014). Basics of qualitative research: Techniques and procedures for developing Grounded Theory: SAGE Publications.
Danni, S. (2017). Top trends in insurtech: AI, robotics and blockchain, says Aon. Retrieved from https://www.information-management.com/news/top-trends-in-insurance-technology-artificialintelligence-robotics- the-internet-of-things-and blockchain-says-aon.
Gupta, H. & Barua, M. K. (2016). Identifying enablers of technological innovation for Indian MSMEs using best–worst multi criteria decision making method. Technological Forecasting and Social Change, 107: 69-79.
Insights, C. (2017). Insurance tech startups raise $1.7B across 173 deals in 2016. retrieved from https://www.cbinsights.com/research/2016-insurance-tech-funding.
Iranmehr, M. & Gitipasand, Z. (2016). A qualitative research: The study of effective factors on the students optimism about the educational system (Studied; Shahid Fahmideh male highschool students in Tehran). Counseling Culture and Psychotherapy, 7(27): 105-126. (In Persian)
Kabourati, J. (2019). Identifying and ranking factors affecting the application of the electronic insurance in the insurance industry: A case study of selected insurance companies. Iranian Journal of Insurance Research, 34(2): 52-71. (In Persian)
Kardgar, E. & Beheshti, A. (1396). Inshortek and its role in risk management in the insurance industry. Twenty-fourth National Conference on Insurance and Development, Tehran, 13 December. (In Persian)
Kumar, A. & Dixit, G. (2018). An analysis of barriers affecting the implementation of e-waste management practices in India: A novel ISM-DEMATEL approach. Sustainable Production and Consumption, 14: 36-52.
Rahnavard, F., Davoud, D., Abbaspour, F. & Farzinmehr, B. (2016). The effect of technology readiness on organizational performance through technology acceptance. Journal of Management and Development Process, 29(1): 99-118. (In Persian)
Rajput, S. & Singh, S. P. (2019). Identifying Industry 4.0 IoT enablers by integrated PCA-ISM-DEMATEL approach. Management Decision, 57(4): 1-35.
Rezaee, M., Rahnama, F., Saeednia, H. R. & Alipour Darvish, Z. (2020). Paradigm model of brand value creation in insurance industry with focus on life insurance: A “Grounded Theory Approach. Iranian Journal of Insurance Research , 35(3): 9-36. (In Persian)
Rouhani Rad, S. (2020). Fintech; essay in worldwide and Iran. Journal of Science and Technology Policy Letters, 10(1): 75-94. (In Persian)
Sage, A. P. (1977). Interpretive structural modeling: Methodology for large-scale systems. McGraw-Hill, New York.
Sen, S., Lam, S. K., Rashid, A. M., Cosley, D., Frankowski, D., Osterhouse, J., Harper, F. M. & Riedl, J. (2006). Tagging, communities, vocabulary, evolution. Proceedings of the 20th Anniversary ACM Conference on Computer Supported Cooperative Work, CSCW 2006: 181-190.
Seyedjavadin, S. R., Moghimi, S. M. & Seyyed Amiri, N. (2015). Entrepreneurial marketing model for SMEs based on Classic Grounded Theory. Journal of Business Management, 7(1): 101-125. (In Persian)
Shafaq, A. & Abdollahi Dezfulinejad, L. (2017). Investigating the opportunities and threats of Fintech for the Iranian banking system. Journal of Economics, Financial Management and Accounting Studies, 3(2): 210-202. (In Persian)
Siau, K. & Yang, Y. (2017). Impact of artificial intelligence, robotics, and machine learning on sales and marketing. The Midwest United States Association for Information Systems 2017 Proceedings, 48.
Singh, M. & Kant, R. (2008). Knowledge management barriers: An interpretive structural modeling approach. International Journal of Management Science and Engineering Management, 3(2): 141-150.
Stewart, H. & Jürjens, J. (2018). Data security and consumer trust in fintech innovation in Germany. Information & Computer Security, 111: 21-29.
Wang, Q. (2021). The impact of insurtech on Chinese insurance industry. Procedia Computer Science, 187: 30-35.
‌Wang, L., Cao, Q. & Zhou, L. (2018). Research on the influencing factors in coal mine production safety based on the combination of DEMATEL and ISM. Safety Science, 103: 51-61.
Warfield, J. N. (1974). Developing subsystem matrices in structural modeling. IEEE Transactions on Systems, Man, and Cybernetics, 4(1): 74-80.